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An approximate solution is developed for two-dimensional, steady, inviscid super- 
sonic flow over an airfoil. This approximation produces accurate results for a wide 
range of Mach numbers and airfoil thicknesses. It is used as the starting point for a 
rapidly convergent iterative numerical solution of the exact equations. A co-ordinate 
system consisting of the principal characteristics and streamlines is employed. 
Examples computed for a symmetric airfoil reveal several interesting features in the 
tail shock and the flow behind the airfoil. 

1. Introduction 
I n  this paper we consider the computation of inviscid supersonic flow over a two- 

dimensional airfoil. While the final step in our investigation is numerical, we attempt 
to incorporate as much as possible our analytical and physical knowledge of such 
flows. The approach is well suited both for numerical integration and for the inter- 
pretation of the resulting flow phenomena. A preliminary version of this approach 
for the case of one-dimensional unsteady flow has already been reported (Sirovich & 
Chong 1980; Chong & Sirovich 1980). I n  the present investigation several new or 
little-known effects concerning the tail shock and flow behind a two-dimensional air- 
foil emerge. These are discussed in $ 6 .  

There are two main nonlinear approximations for this problem. Small-amplitude 
theory gives solutions valid provided the airfoil thickness is not too great and the 
Mach number is not too high. Under these conditions the leading shock wave is fairly 
weak and the solution is approximately given by a simple wave involving only the 
characteristics emanating from the airfoil (Friedrichs 1948; Lighthill 1960). Variations 
in the entropy and in the Riemann invariant which is carried along the down-running 
characteristics are only of third order in the shock strength, so the resulting approxima- 
tion is valid to second order. A correction in the tail shock region is necessary to obtain 
a second-order solution there (Caughey 1969). 

The second type of approximation, shock expansion theory, originated by Epstein 
(1931), employs the fact that even for flows with strong shocks, for which the assump- 
tions of small perturbation theory do not hold, the effect of the down-running character- 
istics remains small. This leads to an analytic solution a t  the airfoil, which has been 
generalized by several authors (Eggers, Syvertson & Kraus 1953; Meyer 1957) to 
provide approximate solutions for the entire flow field. I n  another approach, Jones 
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(1963) has derived by a perturbation method an approximate solution between simple 
wave theory and generalized shock expansion theory. 

I n  $ 4  we derive an approximate solution which is closely related to these, but which 
applies its assumptions more consistently and is somewhat more accurate. This 
approximation includes both shock expansion theory and the second-order theories 
of Friedrichs and Caughey. The derivation and the numerical computation of the 
solution are facilitated by the use of the principal characteristics and the streamlines 
as co-ordinates ( 3  3). Adamson (1968) has used a similar co-ordinate system in another 
context. For a problem in which the down-running characteristics are also important 
(e.g. flow in a nozzle), this approach is less appropriate. 

The approximate solution is used as the starting point for an iterative numerical 
computation of the exact solution ( 9  5). The high accuracy of the approximation leads 
to the exact solution after only a few iterations. This procedure is different from most 
numerical methods for hyperbolic problems. Typical methods apply one of a variety 
of differencing schemes (for a comparison of several such schemes see Taylor, Ndefo & 
Masson 1972) to the equations in their standard form and compute the solution by 
‘marching’ along in the downstream direction. One disadvantage of these methods is 
that  a t  low Mach numbers short step sizes are required for stability. The method of 
characteristics (Liepmann & Roshko 1957, cha. 12) can also be used for this problem, 
although it  is considered in general to be somewhat unwieldy for machine computation. 
The BVLR method (Babenko et al. 1966; Holt 1977) is a finite-difference method 
which is partly based upon the method of characteristics. The transformation of co- 
ordinates employed here also results in a method which is closely related to the method 
of characteristics. 

Special account must be taken of the appearance of shock waves in this type of 
problem. In finite-difference methods this can be done through shock-capturing 
difference schemes, or through explicit shock fitting (e.g. Salas 1976). I n  the present 
method the shock waves can be naturally incorporated in the new co-ordinate system 
as fixed boundaries of the flow field. 

2. Formulation of problem 
We consider uniform flow of Mach number M, > 1 incident upon a two-dimensional 

airfoil (see figure 1) .  It is assumed that there are attached shocks at  the leading and 
trailing edges, and that the flow remains supersonic everywhere. The flow fields above 
and below the airfoil can be computed independently, up to the appearance of the 
tail shocks. The tail shock and the flow behind i t  for the case of a symmetric airfoil 
are treated in appendix B. 

The co-ordinates x and y are scaled by the airfoil length; the pressure p and the 
density p by their upstream values po and po; the velocity (u, w) = (q  cos 8, q sin 8) and 
the speed of sound a by the upstream speed of sound a,; and the entropy s, which is 
set to zero upstream, by the gas constant R. We consider a perfect gas with constant 
specific heats c, = R / ( y  - 1)  and cp = yev, for which the equation of state is 

and the speed of sound is given by a2 = p / p .  The calculations here were done for 
y = 1.4. Modifications for the case of a gas with a general equation of state are out- 
lined in appendix A. 

P = PY exp “Y - 1 ) 81 
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FIGURE 1. Supersonic flow over a symmet.ric 25 yo thick circular arc airfoil 
at upstream Mach number &Io = 2.6.  

The equations of inviscid two-dimensional steady flow are conveniently written 
with the entropy s, the flow angle 8, and the Mach angle p = sin-'(I/M) (where 
M = 4/ a is the local Mach number) as dependent variables. All other physical quan- 
tities can be obtained from these and Bernoulli's equation 

The equations of motion in characteristic form are (Meyer 19G0, p. 273) 

ds  = 0 on streamlines 9 = t ano;  (2) d.2: 

(3) sin 2p ds onCk dY - =tan(B_+p) ;  
dX & f ' ( p ) )  = I - 

2Y 
where P ( p )  is given by 

P(p) = Attan-l(A4 tanp)-p,  A = ( y +  ~)/(y- 1). 

The streamlines and the C+ characteristics are shown in figure 1. The quantities 
r+ = 8 & P ( p )  are called the Riemann invariants. 

If the airfoil surface is specified as y = f (x), the appropriate boundary condition 
there is 

tan 0 = f'(.2:) on y = f(.2:). (41 
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The jumps in 6, p and s across a shock are governed by the Rankine-Hugoniot con- 
ditions (Liepmann & Roshko 1957, p. 85) .  All three quantities can be written as 
explicit functions of ill,,, y and the shock angle, 7. 

3. New co-ordinate system 
As mentioned in the introduction, in a problem with weak shock waves deviations 

in s and r- from their upstream values are third-order quantities. This is shown in 
figure 2, where As and Ar- are plotted on a logarithmic scale against the deflection 
angle 8, for several Mach numbers. As 6 -+ 0,  the curves approach straight lines 
of slope 3. While As and Ar- are both third-order quantities, for a given Mach 
number the jump in r- is always significantly smaller than that in s. This suggests 
that for weak to moderate strength shock waves the flow field can be considered 
primarily an interaction between a simple wave and an entropy variation, with r- 
playing only a small role. 

This leads us to introduce a co-ordinate system (a, P )  consisting of the streamlines, 
a = constant, and the principal (C+) characteristics, p = constant. Taking a. and ,8 as 
the independent variables, x and y must satisfy 

yp = xptan8, ya = xatan(8+p).  ( 5 )  

The entropy equation (2) becomes 

or s = s (a ) .  Equations ( 3  + ) and (3  - ) become 

Sp = 0, 

and 
sin 2p 

(O-P(p)) = --s’(a.), 
2Y 

where 
2 

1 -tan 6 t a n p  (:) * 
w = -  (9) 

Using (7) ,  equation (8) can be simplified to 
X 

(8- P(p))! = (1 - t an6  tanp)  -! 8,. (10) 
Xa 

Equations (5)-(7) and (10) are five equations in five unknowns: 6, p, s, x and y. 
The boundary and shock conditions in the ap plane can be simplified by normalizing 

a. and P appropriately. We let the airfoil surface be the streamline a! = 0, and normalize 
P by setting p = x a t  a = 0. The boundary condition (4) then becomes 

: c (O,P)  = p, y(0,P)  = f ( P ) ,  w , p )  = tan-lf’(P). (11) 

tanT(a) = (l-a)tany(O)+atanp,,, (12) 

One convenient way of normalizing a. is to take the front shock angle ~ ( a )  to be given by 

where ~ ( 0 )  is known from solving the shock conditions a t  the leading edge, and pLo is 
the upstream Mach angle, which t.he shock approaches far away from the airfoil. 
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FIGURE 2. Jumps in entropy s and Riemann invariant r- across a shock wave as functions 

of deflect,ion angle 0, at various Mach numbers : --, As; - - -, Ar- .  

Hence a = 1 corresponds to x, y + co. If 7 is not a strictly decreasing function, a 
different normalization must be used. The flow field in the upper half-plane is mapped 
into a finite region in the ap plane, as shown in figure 3. The principal characteristics 
become vertical lines, and the st.reamlines become horizontal lines. The front shock 
maps into some curve /?(a), and the left- and right-hand sides of the tail shock into 
two separate curves p,(a) andp,(a). The discussion of the tail shock is left to appendix 
B. With the shock angle ~ ( a )  a given function, the shock conditions can be immediately 
solved for B(a,p(a)), p(a,p(a)), and s(a). The shock /?(a) itself will in general depend 
on the rest of the solution, however. 

It is possible to eliminate y from the equations by setting yap = yp, in (5). Using 
(lo),  this gives 

which cai\ be integrated to 
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FIGURE 3. Flow field corresponding to figure 1 in a/3 plane. Streamlines map into horizontal 
lines, a = const., and Gf characteristics into vertical lines, /3 = const. Front shock maps into 
/3(a), and left and righi sides of tail shock into /3,(a) and Ps(a), respectively. 

where A(&) is an arbitrary function to be determined later, and we recall 

= (Y+ 1 ) .  

Similarly, from (5) we get 

At /3 = P(a) the condition 

must be satisfied. Elimination of y using ( 5 )  and substitution of (14) for x produces a 
linear integral equation for A (a) : 

where Q = a-A cos (0 +p), and 

If the solution for 0, p and s is known in the a/3 plane, this equation can be solved for 
A(a),  and the transformation back to the physical plane computed with (14) and (15). 
I n  general, however, the solution in the a/3 plane depends on x, through (10). 

Up to this point the equations in a/3 co-ordinates have been derived without ap- 
proximation, and hence are equivalent to the original set (2) and (3). 
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4. Approximate solutions 
If the third-order changes in s and r- are neglected, that is, it is assumed that 

s = 0 and r- = -P(,uo) everywhere, the solution of ( 2 )  and (3) is a simple wave, in 
which all quantities are constant on the principal (C+) characteristics, which in turn 
are straight lines: 

0 = tan-’f’(P), ,u = P1(#+P(p0)) ,  s = 0 on Cf:  

Y =f(P)+(x-P) tan  P+,u). 
This approximation is due to Friedrichs (1948). (Friedrichs further simplified the 
problem by neglecting terms of third and higher order throughout the calculation.) 

Because simple wave theory takes s and r- constant a t  their upstream values, it 
can be expected to be least accurate near the airfoil, where the shock is strongest and 
the deviation from upstream conditions is the greatest. An improved approximation 
in this region can be obtained using shock expansion theory, in which s and r- are 
assumed to be constant at their values just behind the shock a t  the leading edge, say 
s = so and r- =r;. This leads to a slightly modified version of the simple wave 
solution : 

8 = tan-lf’(P), ,u = P-l(O-r;), s = so. 

This approximation produces a very accurate solution a t  the airfoil, even for flows 
with strong shocks, in which sand r- are not a t  all constant globally. Hayes & Probstein 
(1966) explain that the down-running waves, which can be considered reflections of 
the outgoing simple wave by the bow shock, are fairly weak and are nearly cancelled 
by reflections from the entropy (or vorticity) layers. Mahony (1955) gives a similar 
explanation. The shock expansion solution rapidly loses accuracy as the distance 
from the airfoil increases. This is in contrast to simple wave theory, which is more 
accurate a t  infinity. 

The only assumption in the shock expansion solution at  the airfoil is that r- is 
constant. Mahony & Skeat (1955) and Meyer (1957) have pointed out that, since any 
streamline is a potential airfoil, r- should be approximately constant along each 
streamline, that is r- = r-(a). In  the literature this assumption has been employed 
in various ways. If r- = r-(a), then by (10) 8 = 8(p), i.e. 8 isconstant on C+ characteri- 
stics. This in turn implies that the pressure is constant on C+ characteristics, as can 
be seen from the following form of (3 + ): 

sin 2p dp  ae+-- = o onC+: 9 = t a n ( ~ + p ) .  2Y P dx 

Taking both 8 = 8(P) and p = p ( P )  along with r- = r-(a) overdetermines the problem 
however, since any one of 0, P and r- can be written as a function of the other two 
(and s). This was noted by Eggers et al. (1953). In their generalized shock expansion 
method it is resolved by averaging results assuming r- = r-(a) and 8 = 8(p) with 
those assuming r- = r-(a) a n d p  = p ( P )  (see Hayes & Probstein 1966, p. 498). Meyer 
(1957)) on the other hand, implicitly drops the assumption p = p(P) ,  and uses the 
solution r- = r-(a) and 8 = 8(/3), which satisfies (10) exactly, but does not satisfy (7).  

I n  the present formulation, it appears to be more consistent to approach the prob- 
lem in either of two ways: in equation (10) assume either (i) the left-hand side or (ii) 
the righbhand side is zero. Then solve (10) together with the remaining equation, (7). 



272 T. S.  Lewis and L. Sirovich 

I n  case (i), the solution becomes 0 = 0(/?), p = p ( / ? )  and s = s(a). The function S(P) 
is determined by the boundary condition, and p ( p )  must be determined by the shock 
conditions. It then happens that over the rear half of the airfoil, /? > p( I ) ,  p( /?)  cannot 
be found, since no data is specified on the rear shock. This difficulty does not arise in 
approach (ii), which is the one we adopt. 

This approach can be thought of more simply as arising from the assumption that 
0 is constant on C+ characteristics, rather than the assumption that r- is constant on 
streamlines. If 0, = 0, then (10) reduces to  

( e -P(p ) ) ,  = 0 or B-P(p) = -Po@), (19) 

where Po(.) = P[p(a, P(a))] - @a, /?(a)). Substitution of 0 = P(p)  - Po(.) in the remain- 
ing equation, (7), then gives 

sin 2p 
2P(p),  -Po'(.) = - s'(a). 

2Y 

Po(.) and s(a) are both given explicitly by the shock conditions, so (20) can be re- 
garded as an ordinary differential equation for p, in which p enters only as a parameter. 
It is nonlinear, but can be readily solved using standard numerical methods. The 
initial and final values of p along a given C+ characteristic are both given, by the 
boundary condition and the shock conditions, respectively, which allows us to solve 
for the free boundary @(a). The solution in the a@ plane is then completed by com- 
puting 0(a,p) = P(p(a,/?))-P,(a). The solution for 0, p and s in the a/? plane is 
independent of x and y, because ( lo ) ,  the only equation in which x or y appears, is 
neglected. The transformation back to the xy plane is found by solving (17) for A(.) 
(also a simple numerical calculation) and evaluating the integrals (14) and (15). The 
solution obtained from t,his approximation will satisfy the boundary condition and 
all three shock conditions, but will satisfy (10) only approximately. 

This approach requires more work (the solution of an ordinary differential equation 
on each C+ characteristic) than approach (i) or the generalized shock expansion method, 
but has been found to be more accurate. Additional support for this choice is lent by 
the fact that the factor multiplying 0, in (10) is in general quite small. Approach (i) 
has however been found useful for calculating the flow behind the tail shock, where 
method (ii) is difficult to employ (see appendix B). 

5. Numerical method 
Our approximate solution does not satisfy ( l o ) ,  or, equivalently, the C- equation 

(8). I n  this section we present a simple iterative method for correcting the solution so 
that i t  will satisfy all the equations and conditions. 

The approximate solution is computed on a rectangular grid in the ap plane (as 
shown in figure 3), which is then used in the numerical method. The front shock p(a) 
is therefore kept fixed throughout the iterations. This fixes the normalization of a, 
so for every iteration beyond the original approximation ?(a) is not given by (12) 
and must be found as part of the solution. This also implies that a! = 1 no longer will 
correspond exactly to x, y -+ a. 

Given the approximate solution for 8, p, s and x in the ap plane, a corrected value 
of r- is computed from the C- equation (3 - ), or (S), starting a t  the shock with the 
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value given by the shock conditions and numerically integrating downward along the 
C- characteristics: 

I n  particular, this determines a new value r-(0,  f 3 )  a t  the airfoil, which determines 
a new value of r+(O,f3) there, since r+ = 28- r - ,  and O(0 ,P)  is given by the boundary 
condition. With this as an initial value, a new r+ is computed everywhere by numeri- 
cally integrating (3  + ), or ( 7 ) ,  along C+ characteristics: 

With rf and r- thus determined, the solution given by 

and s will satisfy the differential equations and the boundary condition. However, the 
new value of r+(a,P(a)) will not in general satisfy the shock conditions, and hence 
will imply a different value for the shock angle ~ ( a ) .  This can be used to determine a 
new initial value r-(a,p(a)) for integrating (21), and the procedure can be repeated. 

The transformation back to the xy plane is found by numerically solving the integral 
equation (17) and evaluating the integrals (14) and (15). This must be done a t  each 
iteration, since x and y enter into the computation of the integral in (21 ) .  The C- 
characteristics are oblique to the (a,P) co-ordinate system, so a t  each point a small 
section of the C- characteristic through that point is extended backwards to intersect 
a grid line, and a one-step integration is used to compute r-.  We might, in place of 
equation ( S ) ,  have integrated (10)) which has the advantage that r- is differentiated 
only with respect to f3, so that the integration would be along the co-ordinate lines, 
as in (22). I n  practice, however, this has been found unadvantageous. The solution does 
not converge as quickly, and may not converge a t  all without modification (see Chong 
& Sirovich 1980).  We attribute this to the fact that small variations in r- are naturally 
propagated along the C- characteristics. 

This soheme has been implemented using second-order numerical methods (trape- 
zoidal rule, improved Euler method, etc.). Some results are given in the next section. 

6. Results 
Calculations have been performed for several airfoils over a range of Mach numbers. 

The results presented in figures I and 3-7 are for a symmetric circular arc airfoil with 
thickness ratio 0.25 a t  upstream Mach number &lo = 4. I n  figures 8-10 results from 
the additional cases M, = 2.5 and 7.5, for the same airfoil, are included as well. These 
cases were chosen in part for the interesting effects they exhibit. 

The iteration scheme converges quite rapidly, based on a comparison of the solutions 
a t  successive iterations. In  table I, the maxima (over all grid points) of the differences 
in the values of 6, p and x are given for the case $Io = 7.5 (the most slowly convergent 
of the three cases). The greatest differences are in x and usually occur near a = 1, 
where x -+ a. The errors in x are smaller closer to the airfoil. For thinner airfoils or 
lower Mach numbers, fewer iterations are required for the same accuracy. In  the case 
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Iteration Aelo(0, 0)  APIP Axlx 
1 0.0595 0.1170 0.3701 
2 0.0141 0.0096 0.1221 
3 0.0008 0.0007 0.0112 
4 0.0002 0.0006 0.00 17 
5 0~0001 0.0003 0.0009 

TABLE 1 

of a 10 yo thick parabolic arc airfoil, for example, even at M ,  = 10 the difference 
between the approximate and exact solutions is less than one per cent in 0 and p and 
six per cent in x. I n  such a case there is little reason to go beyond the approximate 
solution. 

The case ill,, = 2.5 is discussed in Holt (1977). Figure 4 contains a comparison of the 
leading shock when computed by our approximate and exact methods, the BVLR 
method (an exact numerical method), and generalized shock expansion theory (the 
latter and the BVLR solution are taken from Holt 1977, p. 77). I n  this case, our 
approximate solution is indistinguishable from the exact solution. The small difference 
between these and t,he BVLR solution is probably attributable to  copying errors. 

Figure 5 contains plots of pressure contours in the xy plane and the value of logp 
on the airfoil surface and on the line of symmetry behind the airfoil. Comparison with 
figure 1 shows that the contour lines between the lead and tail shocks are nearly 
identical to C+ characteristics, i.e. the pressure is approximately constant on C+ 
characteristics. This was seen in 3 4 to be related to the fact that 8 is approximately 
constant on C+ characteristics, which in turn is related to the fact that r- is approxi- 
mately constant on streamlines. The latter two assumptions are illustrated in figures 
6 and 7. 

In  figure 6, the deflection angle 0 is plotted versus a on each of the C+ characteristics 
shown in figure 3. I n  the region behind the tail shock 0 is very nearly zero ( I  81 < 0.005) 
everywhere. The variation in 8 along each characteristic is quite small, with the most 
serious departure occurring on the characteristics originating from the rear part of 
the airfoil. These characteristics tend to intersect the tail shock fairly close to the air- 
foil, however. A related phenomenon is that the principal characteristics are nearly 
straight. This however does not remain true in the region behind the airfoil. 

Figure 7 shows the variation of r- with p on each streamline of figure 3. Somewhat 
remarkably the assumption r- = - P,(a) is better a t  the airfoil than a short distance 
away. The assumption is less satisfactory behind the tail shock. The rapid downstroke 
of the r- curves also indicates a large value of Oa, although 0 itself remains quite small. 

The entropy jumps created by the lead and tail shocks are given in figure 8 for the 
three cases M, = 2.5, 4.0 and 7.5. The entropy variation along the tail shock has a 
two-scale appearance, especially a t  the higher Mach numbers, which shows a very 
rapid decrease in strength in the initial portion of the shock. The slower variation in 
entropy follows that induced by the front shock. Looking a t  figure 1, we see that the 
streamlines spread apart rapidly as the flow passes the midchord position. The incli- 
nation of the flow incident upon the tail shock therefore decreases rapidly, which 
causes a correspondingly rapid decrease in shock strength. 

Another important effect is also a t  work in this region. The gas, which is compressed 
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FIGURE 4. Front shock for flow field of figure 1 as computed by: present approximate and exact 
methods (-), BVLR method (- - -), generalized shock expansion method (- - -). 

a t  the front shock, in following the profile past the midchord experiences a rapid 
expansion, which is strong enough that the local Mach number a t  the trailing edge 
exceeds the upstream value ( M  = 9.83 for the &Io = 7.5 case). This recovery process 
is largely cut off by the tail shock, however, since the large negative value of 0 on the 
after part of the airfoil causes the principal characteristics to have negative slopes, 
so that waves originating there must intersect the tail shock near the airfoil. As a 
result the Mach number along the tail shock falls off rapidly, which augments the 
rapid decrease in strength of the tail shock. For the case .&I, = 7.5 the Mach number 
along the shock even falls below 7.5. 

The pressure field behind the airfoil (figure 5) also contains interesting features. I n  
spite of the very high shock strength at  the trailing edge, the pressure jump through 
the shock does not quite bring p up to the equilibrium pressure p = 1. There is a rapid 
pressure increase immediately behind the trailing edge, in which p increases above the 
equilibrium value, reaching a maximum about one chord length out. The return to 
equilibrium from this point is very gradual. The total variation in pressure behind the 
tail shock is quite small compared with that along the airfoil surfaces. 

Far behind the airfoil p --f 1 and 0 -+ 0. It then follows from the equation of state 
that  

a2 = exp [ - (Y - 1)  %(@-)/YI, 

where sg(a)  is given by figure 8. From (i), we can then compute the velocity q a t  
infinity. This is shown in figure 9 for $lo = 2.5, 4.0 and 7.5. As a result of the non- 
uniform entropy, the flow a t  infinity has a vorticity distribution. 

A feature which is difficult to perceive from figure 1 or figure 5 is that the tail shock 
angle is not monotonic. I n  figure 10 the variation of the slope of the tail shock is 
given for the three cases we have discussed. I n  each case the shock angle decreases 
on leaving the trailing edge. (This result has been verified independently by J. C. 
Townsend 1979 (private communic,zt,ion), using a numerical method developed by 
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M. D. Salas.) This is contrary to what is observed for lower Mach numbers or thinner 
bodies. We have seen that the inclination of the incident flow decreases along the 
shock. If the Mach number upstream of the shock were constant, this would predict 
a decrease in shock angle. The Mach number actually decreases along the shock how- 
ever, which tends to increase the shock angle. At high Mach numbers the shock 
angle is more dependent on the flow angle than on the Mach number, as can be seen 
from the fact that the shock polars for different Mach numbers approach a limiting 
curve as M -+ co (see e.g. Liepmann & Roshko 1957, p. 87). I n  these cases, near the 
trailing edge the decreasing flow angle dominates. Farther away from the airfoil, or 
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FIGURE 6. Flow angle 0 us. a on each C+ characteristic of figure 3. Dashed lines are constant 
values 0 = tan-lf'(p) for comparison. Values along front shock P(a) and tail shock P,(a) are 
also given. 
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FIGURE 7 .  Riemann invariant r- vs. p on each streamline of figure 3. 

Dashed lines are constant values P = -Pu(a) for comparison. 
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a 

FIGURE 8. Entropy s(a) (--) in region between front and tail shocks, and sJa) (---) in 
region behind tail shock, for 2 5 %  circular arc airfoil at  upstream Mach numbers M,, = 2.5,  
4.0, and 7 . 5 .  

7.5. 
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FIGURE 10. Tail shock slope tan qz(a) for M,, = 2.5, 4.0 and 7.5. 
Dashed lines are asymptotic values, tan po. 

01 

in problems with lower Mach numbers or thinner airfoils, the effect of decreasing Mach 
number dominates. 

I n  the case M, = 7.5 the shock angle undergoes a second oscillation in which it rises 
above the Mach angle a t  infinity, p0. This is explained by the rapid fall-off of Mach 
number along the shock, below its value at  infinity. A final item of note in figure 10 
is that  for 41, = 7.5 the shock angle actually starts off with a value which is greater 
than ,uo. As M, + GO the upstream Mach angle ,uo goes to zero, as does the Mach angle 
a t  the trailing edge, since the Mach number there also increases. The shock slope at 
the trailing edge approaches a finite value however, which depends on the airfoil 
slope a t  the trailing edge. 

7. Conclusions 
The methods we have presented are useful in computing two-dimensional flow fields 

about airfoils. The approximate solution is accurate enough for many cases of interest, 
and the numerical method furnishes a rapid correction to the solution in those cases 
where it is not. The characteristic-streamline co-ordinate system is useful both for 
the computation of the approximate solution and the corrections, and is also con- 
venient for displaying and interpreting the results. 



280 T .  S.  Lewis and L. Sirovich 

The use of the streamlines as one co-ordinate and the iterative nature of the numeri- 
cal calculation make the method convenient for the incorporation of a boundary-layer 
correction. I n  a boundary thickness method, for example, a succession of inviscid 
calculations are performed with a changing airfoil shape. The changing shape could 
be easily included in the present iteration method. 

I n  response to  a referee’s request for comparison with other integration schemes, 
we asked Dr James C. Townsend of the NASA Langley Research Center to  run some 
speed trials on their CDC Cyber 175 computer comparing our code with a ‘marching’ 
method developed there. At the lowest Mach number, M, = 1.25, our scheme runs 
about seven times faster than the marching method, while a t  the highest Mach 
number, 31, = 10, our scheme was slightly slower. The present method is most efficient 
a t  low Mach numbers where the approximate solution is most accurate and the fewest 
iterations are required. This is in contrast to the marching method, where low Mach 
number necessitates a short step size for stability, and hence longer computation times. 
While these trials give some idea of relative speed they cannot be considered definitive. 

This work was supported by the National Aeronautics and Space Administration 
under NASA Grant no. NSG 1617. The authors would like to thank Dr James C. 
Townsend for carrying out a number of computations which were very useful in the 
course of this research. 

Appendix A. Case of an arbitrary gas 

(Hayes & Probstein 1966, p. 484) 
For an arbitrary gas, the equations of motion in characteristic form can be written 

ds = 0 on dy/dn: = tan6, (A 1) 

d6-t CDdp = 0 on dy/dx = tan(B&p),  (A 2) 

where CD = po/(poa:pq2tanp). We can consider CD to be a function of p and s. By 
introducing the variables 

4 P ,  8) = W P ,  s) dP and Q(p,  8) = W p ,  s ) /& 

which are defined so that dw = CDdp + Qds, (A 2) can be written as 

d 6 k d w  = & Q d s  on d y l d x  = t a n ( 0 k p ) .  (A 3) 

If w and i2 are now regarded as functions ofp  and s, (A 1) and (A 3) are three equations 
in three unknowns: 6, p and s. Equations (3) are a special case of (A 3) in which 
w = Pfp) and SZ = (sin 2p)/2y. 

The transformation to  ap co-ordinates goes through for the most part as before. 
Equations (6)-(8) in the general case become 

~p = 0 ,  ( 6 + ~ ) ,  = Qs’(cc), 

(&+w$) (6 -o)  = -Qs’(ct), 

where w is still given by (9). The counterpart of (13) is 

0 = 2 + ( p + w ) , ~ o t p + ( ( 8 + p ) ~ t a n ( 6 + p ) .  
Xu 
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This equation can in principle be solved in the same manner as (13), but, depending 
on the form of w, we may not have an explicit integral like (14). 

The assumption 8, = 0 in the general case implies (8  - w ) ~  = 0 or 0 - w = - w,(a). 
The resulting approximation can be expected to be valid a t  least in cases in which the 
behaviour of the gas does not differ too greatly from that of a perfect gas with constant 
specific heats and y = 1.4. I n  particular, it has been shown (see Hayes & Probstein 
1966, $7.2) that shock expansion theory tends to lose accuracy if y is allowed to 
approach 1. 

Appendix B. Tail shock for a symmetric airfoil 
In  general, the solutions above and below the airfoil can be computed independently, 

up to the appearance of the tail shocks. The flows from the top and bottom interact 
behind the airfoil, which complicates the computation of the tail shocks and the flow 
behind them. The upper and lower regions behind the airfoil are separated by a 
contact discontinuity, or slipstream, across which 19 and p are continuous, but the 
other variables jump. I n  the case of an airfoil symmetric with respect to the x axis 
the slipstream coincides with the x axis, and can be considered a rigid boundary. 
The problem is still quite different from the front shock problem, because the flow 
upstream of the tail shock is not uniform. 

The transformation to aP co-ordinates behind the tail shock can be chosen differently 
than that ahead of it. I n  particular, i t  is more proper to regard the C- characteristics 
as the principal characteristics, since the C+ waves are only produced as reflections 
of the C- waves, which originate a t  the tail shock. The approximate solution is some- 
what more accurate if the C- characteristics are used. On the other hand, for numerical 
work it is better to take the C+ characteristics as the co-ordinates, because this has 
the effect of putting more points near the trailing edge, where a rapid variation in the 
solution occurs. We keep a constant on streamlines as they cross the shock, and 
normalize p behind the tail shock so that the infinite region behind the tail shock is 
mapped into a finite region in the ap plane. I n  the calculations presented here, this 
was done by setting P3(01) = 1 + +a, producing the triangular region shown in figure 3. 

The approximate solution used for the flow over the airfoil cannot be conveniently 
employed for the flow behind the tail shock, because the non-uniform flow to its left 
makes it impossible to calculate Po(&) and s(a)  a priori for use in (20). Therefore the 
simpler of the approximations given in $ 4 is used: 8 = 03(P), p = p g ( P ) ,  and s = s3(01). 
All the characteristics intersect the x axis, where 8 = 0, so B3(P)  = 0, and hence in this 
approximation 8 = 0 everywhere. This turns out to be quite accurate (see 5 6). Given 
that 8 = 0 behind the tail shock, i t  is possible to solve the shock conditions for the tail 
shock angle y 2 ( a ) ,  in terms of the solution upstream of the tail shock, which we 
assume has been previously computed. This also determines p3@) and s3(01), and gives 
an ordinary differential equation to solve for the tail shock P2(a). It is possible to 
derive expressions for x and y similar to (14) and (15) for the region behind the tail 
shock, which will involve a new function A3(a).  An explicit solution for A3(a) can be 
found in this case, involving the computed tail shock trajectory. 

The iteration scheme proceeds essentially as before. Given r-(a, PJa)) from the 
shock conditions, we integrate (2 1) along C- characteristics down to the slipstream 
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a = 0. Then we reset r+(O,p) = - r - (O ,p ) ,  and integrate (22) upwards to p3(u). The 
new r+ and r- define a new 8(a, P3(a)), which is used to solve for a new shock p3(a) and 
new functions v2(a), s3(a), and ?--(a, ,8,(a)), with which we start t,he next iteration. 
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